On Asymptotic Mean Integrated Squared Error’s Reduction Techniques in Kernel Density Estimation
نویسندگان
چکیده
منابع مشابه
Asymptotic Representation of Ratio Statistics and Their Mean Squared Errors
Some statistics in common use take a form of a ratio of two statistics such as sample correlation coefficient, Pearson’s coefficient of variation and so on. In this paper, obtaining an asymptotic representation of the ratio statistic until the third order term, we will discuss asymptotic mean squared errors of the ratio statistics. We will also discuss bias correction of the sample correlation ...
متن کاملOn Estimation of Mean Squared Errors of Benchmarked Empirical Bayes Estimators
We consider benchmarked empirical Bayes (EB) estimators under the basic area-level model of Fay and Herriot while requiring the standard benchmarking constraint. In this paper we determine the excess mean squared error (MSE) from constraining the estimates through benchmarking. We show that the increase due to benchmarking is O(m−1), where m is the number of small areas. Furthermore, we find an...
متن کاملMinimax Estimation of a Bounded Squared Mean
Consider a normal model with unknown mean bounded by a known constant. This paper deals with minimax estimation of the squared mean. We establish an expression for the asymptotic minimax risk. This result is applied in nonparametric estimation of quadratic functionals.
متن کاملNonnegative mean squared prediction error estimation in small area estimation
Small area estimation has received enormous attention in recent years due to its wide range of application, particularly in policy making decisions. The variance based on direct sample size of small area estimator is unduly large and there is a need of constructing model based estimator with low mean squared prediction error (MSPE). Estimation of MSPE and in particular the bias correction of MS...
متن کاملSome Asymptotic Results of Kernel Density Estimator in Length-Biased Sampling
In this paper, we prove the strong uniform consistency and asymptotic normality of the kernel density estimator proposed by Jones [12] for length-biased data.The approach is based on the invariance principle for the empirical processes proved by Horváth [10]. All simulations are drawn for different cases to demonstrate both, consistency and asymptotic normality and the method is illustrated by ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computational and Theoretical Statistics
سال: 2019
ISSN: 2384-4795
DOI: 10.12785/ijcts/060110